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Abstract
In this paper an approximation method based upon spline functions is
developd for the eigenvalue problem associated with functional differential
equations. Convergence results are established and the rate of convergence is
investigated. Numerical results for cubic and quintic spline based methods
are given. The paper concludes with a brief discussion of other possible

approximation methods.
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Introduction

In recent years spectral approximation methods for elliptic differential
operators have been extensively treated (see [12], [14] and [16) for a survey
of the literature).

In this paper spectral approximation results are established for a large
class of linear functional differential equations (FDEs). The eigenvalue pro-
blem for FDEs is formulated as the eigenvalue problem of a linear closed oper-
ator A in the product space. We consider the least squares-type approxima-
tion for T = A-1 via spline approximation technique and the general results
" on spectral approximation for compact operator [l], [16] are then applied in
our situation.

A more direct and natural method would involve the approximation of A
as in Banks and Kappel [4], and as discussed below we have carried out
computations based on such a scheme. However, our scheme performs much better
numerically. Moreover we can establish convergence results for our scheme,
whereas we have been unable to establish convergence of the methods in the
case of the more direct approximation of A.

The knowledge of the spectrum plays an important role in studying the
stability and controllability, etc., of evolution systems [13} and gives an
approximation scheme for such systems [5].

In the last several years it has been widely recognized that the product
space (Z = B x Ly) provides an appropriate state space for the investigation
of certain problems involving FDEs of the retarded type as well as of the neu~-
tral type [6], [9], [11]). These spaces have been used in the context of opti-
mal control and estimation problems for systems governed by FDEs (see {[2],
[9], [10], [13], for a survey of literature), and approximation techniques of
identification and optimal control for retarded systems, e.g., [2], [3],

[4], [8].



We first summarize in Section 2 certain theoretical results about FDEs in
order to set up our eigenvalue approximation problem in X x L2 and givé a
complete discussion of our ideas. A general approximation of the resolvent
of A 1is developed in Section 3. In Section 4 we study a realization of the
general scheme given in Section 3 by choosing spaces of spline functions as
approximate subspaces. Finally in Section 5, numerical results for cubic and
quintic spline based methods are presented. For comparison, we also give a
result for the spline approximation of A which is discussed in [4].

Throughout the paper, the dimension n and the delay r € (0,2) are
assumed to be fixed and the following notation will be used. The Hilbert
space of R'-valued, square integrable functions on the interval [-r,0] 1is
denoted by Lj. cK  denotes the space of K'-valued continous functions which
possess k continuous derivatives on [-r,0]. For k = 0 this is usual

space of continuous functions which i1is denoted simply by C. Wg is the

Sobolev space, the space of F'-valued functions f on [-r,0] with f(k-l)
absolutely continuous and f(k) € LZ' We denote by Z the product space

B x L. Given an element ¢ € Z, ¢0 e E' and ¢1 € L2 denote the two
coordinates of ¢,¢ = (¢0,¢1). The symbol <<e,¢>> stands for natural inner
product in Z. All other inner products are denoted by <¢,*> when the un-
derlying space can be understood from the context. [+l denotes the norm of
elements of a Banach space and of operators between Banach spaces and ||
denotes the Euclidean norm in F'. For a linear operator A we use the stan-
dard notation: D(A), R(A), N(A), for the domain, range and null space of A,
respectively, and p(A) and o(A) denote the resolvent set and spectrum
of A, reséectively. Given a measurable function x : [-r,0] + B and

t » 0, the function x, : [-r, 0] » B is defined by

xt(e) = x(t+6), 6 ¢ [-r,0].




2. The Linear Functional Differential Equation

In this section we state the type of equation we consider and the results
for this equation which are important for the discussions to follow.

Given (n,9) € Z we consider the functional integral equation in ¥

t
(2.1) Dx, = n +(J) Lx_ds

xO = ¢

where D and L are linear F'-valued operators with domains D (D) and

D(L) both subspaces of Lyp. Assume that D and L are given by

m

0
(2.2) Do = 6(0) = T A_6(0) = | AT(8)6(0)d0
i=1 -r
and
m
0 2
(2.3) Lo = T AG(0) + [ A%(8)6(0)d0
i=0 -r
where -r = em < ese 90 = 0 and Ai’ Ai(e) are n X n matrices, the ele-

ment of © -+ Ai(e) being integrable on [-r,0] for 1 = 1,2.

For (n,0¢) € Z there exists a unique solution x to (2.1) in
Ly([-r,7],K") for each <t > 0 such that (Dx,,x.) € Z for each t € [0,7]
and depends continuously on the initial data (n,4) (e.g. see [6], [9]).
Define for t 2 0, S(t) : Z+>2Z by S(t)(n,6) = (Dxt,xt) where x is the
solution to (2.1). Then {S(t),t > 0} forms a strongly continuous semigroup
in Z. Using rather standard arguments (e.g., [6], [9], and [18]) one can

then show:




Theorem 2.1

(1) If A denotes the infinitesimal generator of S(t), t > 0, then
(2.4) DA) = {(n,0) € 2] €L, and 10 = D3},
and for (D¢,0) e D(A),
(2.5) | AD6,6) = (L6,4).

(i1) The spectrum of A is all point spectrum and A € o(A) if

det A(N) = 0 where
(2.6) A = () + L(eM).

For each X\ & p(A), the resolvent of A 1is compact and is given by

AI-A) 7Lz = 04,4) for z = (M,0) € 2 »
Yith
(2.7) o) = &M% + Jz MO B eyar
where
(2.8) b = a7 00+ osny ()0 By |

(111) If X e o(A) 1s a zero of det A(A) of multiplicity m, then

Z =N -A)"+RAI -R)™  and both NI - AY® and RQI - AT are




invariant with respect to S(t), t > 0. Moreover N(AI - AY® has dimension
. T 3y 8
m and its element is represented in the form (D¢,¢) with ¢ = ( X aje )e s

a, € K. 3=1
J

Remark 2.2 If (n,¢) € D(A) then the solution x to (2.1) is absolutely
continuous in [-r,T] and satisfies the differential version of equation

(2.1):
(2.9) -—'Dxt = th X, = &

for almost all t.

Remark 2.3 Let us introduce an equivalent norm in Z such that Z with this
norm is again a Hilbert space, i.e., define the weighting function g to be

step function on [-r,0] such that

g(®) = 3 for 6 & (8

m-j+1’em-j) j = l,ooo,m ’

and let us denote by 2 the completion of Z with respect to inner product

g

0
s )y = <ty gt [ <48, 0,(0)> g (0)¢0.

Then for retarded systems (i.e., D¢ = ¢(0) 1in (2.2)), it 1is shown in [4]

that A - BI is dissipative in Zg for some positive constant fB. Obvious-

ly, the norm "'"z is equivalent to H-ﬂz. Therefore, all results stated in
g
Theorem 2.1 remain valid in Zg.



3. An Approximation of the Resolvent

Without loss of generality we assume that T = A-l exists, i.e.,
0 € p(A) since adding a constant ¢ only shifts the eigenvalues of A. It
is easily shown that X € o(A) 4if pu = 1/A € o(T) and moreover, the princi-
pal vectors of A associated with A are the same as the principal vectors
of T associated with u. Under this assumption there exists a positive con-

stant w such that
(3.1) <<Az,Az>> > u)llzll2 for all =z e D(A).

. Indeed, for any element 2z € D{A) there exists a unique ¢ € Z such that

z = A'1¢ and therefore
2
<<Az,Az>> = <<, >> = HPI°,
However, there exists a positive constant a such that

(3.2) IA~1en < angn for all ¢ € Z,

so it follows that <<Az,Az>> > (1/a2)Hzﬂ2.

Consider the following approximation of T: if <{Zy} d1is a sequence of
subspaces of Z, then find a minimizing element in Zy of

(3.3) 1Az - £ for each f € Z.

Then such an element 2z must satisfy




(3.4) <A - £, Ag>> = 0 for all ¢ e zZ\.

Hence from (3.1) it follows that the minimization problem (3.3) has a unique
solution 2N satisfying (3.4). Let us define a linear operator ™ in z

by
(3.5) ™ £ = N for f ¢ Z
where zN 1s the unique solution of (3.4).

Lemma 3.1

Suppose the following conditions are satified.

(a) zNc p(A)
(b) There exists a sequence {¢N} such that ¢N = (D¢N,¢N) € ZN,

m L ¢ =L6 in ® and lim § =4 in L, for all 6 ¢ ck, k> 2.

Then
N
(1) T + T strongly in Z.
(i1) Ny 1s collectively compact, i.e., the set (N . ongn < 1, N =

1,2,..+} 1is sequentially compacte.

Proof:

(1) Let f = (fo,fl) e Z. Since CX~l 15 demse in L, for any
€ > 0 there exists a fl £ Ck'1 such that Hfl - %1" < €. Let us define
£f=(9%fY ez and ¢ =A"l £ = (D§,6). It follows from (2.7) and (2.8)

that $ € Ck- It then follows from the condition (b) there exists an No



and a sequence {¢N} such that if N > Nj then

1A(dy - &)u2 < e.

Note that

IlA(TNf - T£)N < I A((pN - J)) + % - fll € 2¢e.

2
w L]

Hence from (3.1) we have HTNf - Tfh <
(ii) For any f ¢ Z

IATNEN < WATNE = £) + £ 1 < IATNE - £0 + £V,

By the definition of ™

< £+ IEN = 20£E0.

Hence {ATNf : Ifl <1 N =1,2,...,} 1s a bounded set in Z. Therefore (i1i)

follows from the compactness of A~l, (Q. E. D.)

Let B be a fixed nonzero eigenvalue of T with algebraic
multiplicity m and suppose that I 1s circle centered at p which lies in

p(T) and which encloses no other points of o(T). Then the operator
S - -l
(3.6) E =5 ]F(zI T) "dz

is a projection operator onto R (E) = N((pI-T)™. The following results for

the case of strong convergence of collectively compact operators can be found




in Anselone [1]. For N sufficiently large T C p(TN) and the spectral

projection
(3.7) BN = E%I | (z1-1Vy 14z
T
exists; EN converges strongly to E and {EN} is collectively compact; and

dim R(EN) = dim R(E) = m. Thus, counting according to algebraic multiplici-
ties, there are m eigenvalues of ™ §n T which we denote ul(N),...,um(N).
For each j, 1lim uj(N) =pu as N » o,

Moreover, the general results of collectively compact convergence of a

family of compact operators in Osborn [16] provide the following estimates for

the convergence. Given two closed subspaces P and Q of Z we define

(3.8) 8(P,Q) = sup dist(z,Q).
' zZEp
Izl = 1

Note that &(P,Q) = 86(Q,P) since Z 1s a Hilbert space.

Theorem 3.2

(1). There exists a constant Cl such that

s(R(E), REE)) < c,! (r-tV) 1
R(E)

for all sufficiently large N, where (T - TN)'R(E) denotes the restriction
of T-T¥ to R(E).

(i1). Define the arithmetic mean of {“j m}

S 1 1§1
pR(N) == ) p. (N).
n =1 3

-9-



Then there exists a constant C2 such that

b= RO € GNT = ™ | pgyle

(1ii). ©Let « be the ascent of uI - T. Then there exists a constant

C3 such that
a N
Ip.—uj(N)I <C3I|(T—'1‘ ) R(E)ll.

(iv). Let p(N) be an eigenvalue of ™ and wN a unit vector in

R(EN) satisfying (p(N) - TN)k wN = 0 for some positive integer k < a.
Then for any integer & with k < 2 < a, there exists a vector uN e R(E)

such that (pI - T)luN = 0 and

"(2-k+1)/a.
R(E)

HuN - WNH < C4 T - TN)

4. Spline Approximation

In this section we choose the zV  in Section 3 as a certain subspace of

spline functions and we discuss the rate of convergence of the approximation

schene.
N
Let {ej}, j=1,¢ee,N 4+ 2k + 1 be the scalar (2k - 1)th order spline
function on [-r,0] corresponding to the partition tN = - j(zr/N),

3

j =0,e0e,N of [-r,0] and ng_l be the linear subspace of Z spanned by

elements of the form (D¢,9) € 2 with
¢ = (0"00,0,61;,0,...,0).

-10-




N N
Then Z, , C D(A) and dimZ, , =n(N + 2k + 1) = ky.

Lemma 4.1

{ng_l} satisfies the conditions of Lemma 3.1 for k > 1 and there

exists a constant Cg depending upon E such that
N 142k=-1
(4.1) 1T - T pegy P < Gl
Proof: Let z = (Dd,9) ¢ D(A) with ¢ € c?®  and ¢¥ denote the interpola-
ting (2k-1)th order spline function defined by

(4.2) ¢¥(t§)

¢(t?) 4 =0,00.,N

A0 = 6@ 0)

and

NP r) = 6P emy, 1= 1,000kl

Using the well-known convergence properties of interpolating spline,

eogo, [17, p‘ 3]

(4.3) n&? - o1 <M ﬁ%)Zk'l en .
W
2

for some positive constant M.

For 6 € [-r,0] we have
N ® .y
07(8) = 6(0) + | 6 (E)dE
0

-]l]l-



and hence

Note that

L

0

1678) = 6(8)] < [ 1d7(2) - d(&)lar
5

1,
<r/2“¢r:_

< ¢ M(%I-) Zk=1 4

o
Ly

2K
Wy

is a continuous functional C + B. Thus, the condition (b) of

Lemma 3.1 is satisfied and moreover, we have

N
where zI

(4.4)

For any f = (fo,fl) e R(E)

we have

= (D¢¥, ¢§]) £ Z and

1A(z - zl_g)“ <M(1 +

()9

HT-TYEN <

el= gl

e

1
/2||Lu)(

m 0o 4
VAl + ] 1A
1=0 -r

b ACT - TNYEN

Az - z?)n

1

(1 +r /

iy (g)

1

(1 +r /2

i (x)

From (iii) of Theorem 2.1 it follows that "fl

-12-

)Zk‘luon

’
- 2k

2

1
N

6)|de.

for a fixed pu let z = Tf = (D¢,$), then

2k-1“¢"
w2k
2

2k~1, .1
[F3'! .
w2k-1

2

1
1 2Kk-1 < yIf "L for some
W2 2




positive constant <y depending upon £l.  Therefore (4.1) follows from the

finiteness of dim R(E). (Q. E. D.)

From the estimate (4.1) and Theorem 3.2 the rate of convergence for

eigenvalues is at least O((lJZk_l).

N
According to the equation (3.4), TNI N has the following coordinate
Z
representation. Let BN be given by 2k=1
N N N
(4.5) B = (e]seemregmy) ® 1,

when (X) denotes the Kronecker product and I 4is the n X n  identity matrix

and

(4.6) BN = (pg%,gY) .

Define kN x kN matrices

N N 45N
(4.7) Ry_p = <ABT,AB>>,
and

N °N 4 ON
(4.8) : Hpy = <<B JAB >>.
Then

N, aN aN (N -1 ,.N T

(4.9) T (B a) = B (RZk—l) (HZk-l) a,

where a 1is kN dimensional column vector.

Note that from (3.1) it is easy to show that ng-l

that c(TN) is equal to the set of eigenvalues of the matrix:

is invertible and

-13~




N N -1,.N T
(4.10 Xpem1 = (Rpey) ™ (B y )

5. Numerical Results and Remarks

In this section we present some numerical results to illustrate the
approximation methods described in Section 3 and 4 and discuss other possible
approximation methods.

The matrices (4.7), (4.8), the inverse of ng-l

the matrix ng-l were computed using standard algorithms such as Gaussian

and the eigenvalues of

quadrature, Gauss elimination and the QR-method [7].

In order to analyze the accuracy of approximation we need the approximate
reference eigenvalues. To this end the approximate eigenvalues obtainéd by
our methods were put into an IMSL package, which computes the roots of an ana-
lytic complex function using Muller’s method with deflation, as initial
guesses. In the tables below, XSXACT denotes the eigenvalues obtained by

the following steps.

Step 1l: Compute the approximate eigenvalues by using a quintic spline
| based method with N appropriately chosen for each example.

Step 2: Compute the roots of the characteristic equation by using

Muller’s»method in which the eigenvalues obtained in Step 1

are used as initial guesses. A root is accepted if two suc-

cessive approximations to it agree in the first seven digits.

14—




Example 1

For the first example we consider the first order equation:

x(t) = x(t) + x(t-1).
For this example

p,=71\-ec(’1‘) 1f AN =A-1-et=0

and the calculations were carried out for cubic and quintic spline methods.

In the tables below Kz and Kg denote the computed eigenvalues based on cu-
N N Ny,2

bic and quintic splines respectively. éc and éq are the errors IA(XC)I

and |A(K§)I2 respectively. The results clearly show that the convergence of

xq is much faster than the convergence of kc. For both methods the rate of

convergence 1is better than we expected in Section 4 and the eigenvalues with

small modulus are obtained almost exactly regardless of N.

~-15-




TABLE I

KS 68 K16 616
c c c
1.278465 3 x 10-20 1.278465 5 x 10-.24
-1.588318 + 4.155300 1 5 x 10—10 -1.588317 £ 4.155305 1 1 x 10.-13
-2.422831 £ 10.68360 1 4 x 10_3 -2.417678 + 10.68602 1 3 x 10-7
-3.247468 + 17.03489 1 7 x 101 -2.863190 £ 17.05637 1 9 x 10-4

-3.190732 £ 23.39339 i 3 x 10"

-3.599035 + 29.79009 1 5 x 10

N oo Aexact

1.278465 3 x 10724 1.278465
~1.588317 £ 4.155305 1 3 x 1077 ~1.588317 + 4.155305
~2.417631 + 10.68603 i 5 x 10711 ~2.417631 % 10.68603
-2.861518 + 17.05612 i 9 x 1078 -2.861502 + 17.05611
~3.167905 + 23.38566 1 2 x 107 -3.167754 + 23.38558
~3.402828 + 29.69862 i 1 x 1073 ~3.401945 + 29.69798
-3.595517 & 36.00485 1 4 x 1072 ~3.591627 + 36.00146
~3.765356 + 42.31378 i 7 x 1071 -3.751047 % 42.29965

3.934929 + 48.64474 1 1 x 101 ~3.888543  48.59442

-16=-




TABLE II

No. xg 52 xé6 5:6

1 1.278465 4 x 1072 1.278465 7 x 10727
2 -1.588317 + 4.155305 1 3 x 10718 _1.588317 £ 4.155305 1 3 x 10722
3 -2.417631 % 10.68600 i 1 x 10/  -2.417631 + 10.68603 1 1 x 107 %
4 -2.877073 + 17.03424 1 2 x 1070 -2.861504 % 17.05611 i 2 x 107°
5 ~3.167935 % 23.38550 1 2 x 1077
6 ~3.408216 + 29.69662 1 3 x 1072
7 -3.726049 % 35.99129 1 3 x 1o’
No. xzz 522 Aoacr

1 1.278465 4 x 10724 1.278465

2 -1.588317 + 4.155305 1 8 x 10722 ~1.588317 % 4.155305

3 -2.417631 % 10.68603 i 1 x 10720 -2.417631 + 10.68603
4 -2.861502 + 17.05611 1 4 x 10716 -2.861502 + 17.05611
5 =3.167754 + 23.38558 1 1 x 10712 ~3.167754 + 23.38558
6  =3.401946 + 29.69798 1 7 x 10710 -3.401945 £ 29.69798
7 -3.591638 % 36.00146 1 2 x 1077 -3.591627 + 36.00146
8  -3.751138 % 42.29968 1 2 x 107° -3.751047 £ 42.29965
9 -3.889167 + 48.59469 1 1 x 1073 -3.888543 + 48.59442
10 -4.013041 * 54.88863 1 5 x 1072 -4.009422 £ 54.88686
11 -4.135839 % 61.18780 i 2 x 10° ~4.117267 + 61.17761
12 -4.301116 + 67.51884 1 5 x 101 -4.214618 £ 67.46710

=17~



According to the calculations in Step 1 with N = 94, fifty-three "good"
approximations, which agree at least in the first three digits of the real
part and four digits of the imaginary part with the reference eigenvalues

94

KEXACT were obtained. In addition to these eigenvalues, twenty—-two more

eigenvalues were obtained through Step 2.

Example 2

For the next example we consider the first order neutral system

X(t) -4 x(t = 1) = x(t) + x(t=1)

with the characteristic equation det A(x) = X(l - %e-x) - (1 + e—x). The
numerical results for this example were carried out using quintic spline ap-
proximation with N = 94 and can be found in Table III. We can observe the
neutral chain {A ¢ € |\ = - log2 + 12km, k ¢ N}. Althéugh we have not
listed all of the computed eigenvalues, a total of eighty "good" approxima-

tions were obtained via Step 1 and then Step 2 with N = 94.

18-




TABLE ITT

No. xz4 524 524 Aoact
1 1.414842 3 x 10722 1.414842

2 -2.553133 1 x 10719 -2.553133

3 -0.7108952 £ 5.775593 6 x 10721 ~0.7108952 +5.775593 1
4 =0.6969801 + 12.32420 g8 x 10720 ~0.6969801 +12.32420 1
5  -0.6948095 + 18.68940 5 x 10717 -0.6948095 +18.68940 1
6  -0.6940744 + 25.01295 4 x 10718 ~0.6940744 +25.01295 1
7 -0.6937383 £ 31.32022 3 x 10717 -0.6937383 +31.32022 1
19 -0.6932011 + 106.7861 1 2 x 107 -0.6931980 + 106.7861
20 -0.6931989 + 113.0709 1 7 x 107 -0.6931925 + 113.0708
21 -0.6932007 + 119.3555 1 4 x 1074 -0.6931879 + 119.3554
22 -0.6932091 % 125.6402 1 2 x 1073 ~0.6931839 + 125.6398
23 -0.6932286 + 131.9248 1 7 x 1073 -0.6931801 + 131.9242
24 -0.6932678 + 138.2096 1 3 x 1072 -0.6931775 + 138.2084
25  -0.6933413 + 144.4949 1 1 x 1071 -0.6931749 & 144.4925
26 -0.6934740 + 150.7810 1 4 x 107} -0.6931725 + 150.7766
27  -0.6937085 + 157.0687 i 2 x 100 -0.6931707 + 157.0605
28 -0.6941158 + 163.3592 1 5 x 10° -0.6931689 + 163.3445
29 -0.6948143 % 169.6545 1 2 x 10} ~0.6931673 % 169.6283
30 ~0.6959983 + 175.9581 1 7 x 10t -0.6931659 + 175.9121
31  -0.6979865 + 182.2758 1 2 x 10 ~0.6931646 + 182.1959

~]19-




Example 3

Here we consider the equation for an oscillator with delayed damping
x(t) + %(t - 1) + x(t) = 0.

Rewriting the above equation as a first order system we have

xl(t) 0 1 xl(t) 0 0 xl(t-l)

xz(t) -1 0 x2(t) 0 -1 xz(t—l)

where x;(t) = x(t) and x,(t) = x(t). For this example the characteristic

2 + Ke_x + 1 =0 and the calculations were carried out

equation is given by A
using a quintic spline approximation with N = 45 which provided forty-one
accurate approximation for the eigenvalues through the two-step procedure

outlined above. Note that this system has two unstable eigenvalues "0.0219316

+ 1.601953 i." But the system: x(t) + x(t) + x(t) = 0 1is stable.

-20-~




TABLE IV

No. x25 5q45 ApoacT

1 -0.7384324 g x 10721 -0.7384324

2 0.0219316 + 1.601953 1 2 x 10722 0.0219316 + 1.601953 1
3 -2.046879 + 7.582028 1 3 x 10717 -2.046879 +  7.582028 1
4 -2.648399 + 13.94769 1 3 x 10717 -2.648399 £  13.94769 1
5  -3.017915 & 20.27187 i 9 x 10717 -3.017915 +  20.27187 1
6  =-3.286399 + 26.58018 1 1 x 10711 -3.286399 +  26.58018 i
7 -3.497613 % 32.88056 1 5 x 1070 -3.497613 +  32.88056 1
8  -3.671812 + 39.17634 1 g8 x 107/ -3.671811 +  39.17634 1
9 -3.820082 & 45.46920 1 6 x 107 -3.820078 +  45.46920 1
10 -3.949172 % 51.76008 1 3 x 1073 ~3.949154 +  51.76007 1
11 -4.063528 % 58.04959 1 1 x 1071 ~4.063448 +  58.04954 1
12 -4.166328 + 64.33820 1 3 x 10° -4.166003 +  64.33796 1
13 -4.260209 + 70.62655 1 6 x 10! ~4.259009 +  70.62558 i
14 -4.348215 + 76.91612 1 1 x 103 ~4.344095 £+  76.91258 1
15  -4.435822 + 83.21115 1 2 x 104 ~4.422504 +  83.19908 {1
16 -4.536140 + 89.52395 1 2 x 10° ~4.495209 +  89.48519 1
Remark 5.1

The approximate methods developed in Banks-Kappel [4] provide a method to
approximate the eigenvalues of FDEs of retarded type. Let {PN} be the se-
quence of orthogonal projections PN : Zg > ng-l
2.4 for the definition of Zg) and AN = pNAPN, Then it is known that for A

for a fixed k (see Remark
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sufficiently large (AI - AM~1  converges strongly to (AI - Ay~l.  From

this, when combined with the fact that (AL -~ A)'1 is compact, one can argue

the convergence results as in Theorem 3.2. The author has tried repeatedly

but unsuccessfully to prove that {(AI = AN)-1} is collectively compact. The

following numerical results suggest that the convergence results are true.
The calculations were carried out for Example 1 by using a quintic spline ap-

proximation with N = 32. Although we have not listed the results of this

scheme for other examples, we note that the convergence of this scheme is much

slower than that for our scheme. For instance, the equation errors égEK are
16

much bigger than 62 and 6q in Table II for the eigenvalues with small mo-~

dulus in this calculations.

TABLE V
No. )‘12-2-1( 5231( )‘ggACT
1 1.278464 8 x 10710 1.278465
2 -1.588319 + 4.155304 1 1 x 10710 -1.588317 +4.155305 1
3 -2.417643 + 10.68603 1 2 x 1078 ~2.417631 +10.68603
4 -2.861526 + 17.05611 1 1 x 1077 -2.861502 +17.05611
5  -3.167977 + 23.38543 1 4 x 1077 -3.167754 +23.38558
6  -3.403925 + 29.69778 1 4 x 1073 -3.401945 +29.69798
7 -3.600767 + 36.00608 1 1 x 1071 -3.591627 +36.00146
8  -3.772276 + 42.33761 1 4 x 10° ~3.751047 +42.29965
O -3.861764 & 48.75268 1 6 x 10! -3.888543 £48.59442
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Remark 5.2

From the numerical results above our method appears to yield good approx-

imations for the eigenvalues associated with FDEs. Even for small N(e.g.
N = 8) it yields good approximations to eigenvalues with small modulus. And
it provides good initial guesses for a subroutine to compute the roots of the
characteristic equation. In the case when n, the dimension of the system
(2.1) 1s large we have to solve the eigenvalue problem for large order
matrix. For such a case it seems better to choose the higher order spline
elements for the approximation rather than increasing N. Note that Theorem
3.2 remains valid in Zg for any weighting function g. For the case when
(2.1) has more than one point delay the choice of g as in (2.10) would pro-
vide good approximation methods.

For the case when (2.1) only has single point delay, the implementation
of the algorithms for o;r scheme is almost as easy for the scheme described in
Remark 5.1. For general ease the inversion of the matrix ng-l is more
complicated, so we would use the QZ~-method [15] to find eigenvalues ;f
N N

generalized eigenvalue problem: XRZk-la = H ok-1%"

Let us discuss other possible approximation methods.

kemark 5.3

Let us consider a sequence of approximations to T defined by PN T PN
where {PN} is the sequence of orthogonal projections defined in Remark
5.1. Then it is easy to show that PN T PN coﬁverges in norm to T which
implies {PN T PN} is collectively compact. Thus Theorem 3.2 applies to this

type of approximation.
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Remark 5.4

From Theorem 2.1 it follows that
I’ .o
D(A") = {(D4,4) € Z|6 € L, and D$ = Lo}
and
A2¢ = (L3,9) for D(Az).
And it is equivalent to the following generalized boundary wvalue problem:
DA = {0 ¢ L2|¢ el, and Dé = Lo},

Ad = <b for ¢ & D(A).

Note that )\2 £ o(x) 1f N € o(A). Thus we may extend the methods in (12},

[14) for elliptic boundary value problem to such a problem.
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